D i s k u s s i o n


  Beitrag 2113-1
Nachweis einer Klarstellung zur SRT

 
 

In Wikipedia wird völlig richtig erklärt:



Bewegte Uhren scheinen langsamer zu gehen:

Jeder Beobachter, relativ zu dem die Uhr sich bewegt, hat diesen Eindruck.

Das Ausmaß allerdings, in dem unterschiedliche Beobachter eine bewegte Uhr langsamer gehen sehen, kann von Beobachter zu Beobachter verschieden groß sein. Kurz:


Wie schnell ein Beobachter eine Uhr gehen sieht,

hängt davon ab, wie schnell er sich ihr gegenüber bewegt.



Man kann das einsehen wie folgt:

    Hat man zwei Objekte, die sich mit konstanter Geschwindigkeit von einander weg bewegen, so wird jedes von beiden den Eindruck haben, die Zeit beim jeweils anderen vergehe langsamer. Da sich diese beiden Beobachtungen aber widersprechen, steht fest, dass es sich hierbei um einen nur beobachtungstechnisch bedingten Effekt handelt: um ein Scheinergebnis, welches sich der Realität des Beobachters zuordnet, aber nicht Wirklichkeit sein muss.

    Und tatsächlich gilt ja im Rahmen von Einsteins Theorie immer:

    Jede Beobachtung ist ihrem Ergebnis nach abhängig vom Bezugssystem, aus dem heraus der Beobachter argumentiert.

    Anders gesagt: Wir sprechen stets nur über beobachterspezifische Realität



Kleine Übungsaufgabe:

    Nimm an, wir hätten einen Schienenweg, der einen Kreis darstellt. Irgendwo auf dieser eingleisigen, kreisförmigen Strecke stehen zwei baugleiche Lokomotiven, deren Rückseiten sich berühren und die zum selben Zeitpunkt in entgegengesetzte Richtung abfahren, stets identisch beschleunigt werden, aber anhalten in dem Moment, in dem sie sich wieder berühren (sie kommen ja nicht an einander vorbei). Beide, so nehmen wir an, transportieren baugleiche Uhren, die beim Start der Lokomotiven 12:00 zeigten.

    FRAGE: Werden die beiden Uhren unterschiedliche Zeit anzeigen, wenn die beiden Lokomotiven wieder aufeinander treffen? (Sie werden dann jeweils genau gleich weit gefahren sein.) Wie verträgt sich deine Antwort mit der Tatsache, dass während der Fahrt aus Sicht jeder der beiden Uhren
     
    • die jeweils andere langsamer ging, solange der Abstand zwischen ihnen sich vergrößert hat
    • bzw. schneller ging, sobald der Abstand zwischen ihnen sich wieder verkleinerte.




Okotombrok in 1997-99:
 
Grtgrt in 1997-94:
 
Das Szenario symmetrisch zu machen erlaubt uns zu erkennen, dass — in der SRT —

die beobachtete Zeitdilation nur in den  S i c h t e n  der beiden Beobachter auftritt, aber eben  n i c h t  in der Raumzeit selbst.

Dummes Zeug,
das einzige, was dein Szenario erkennen lässt ist, dass unter gleichen Bedingungen Bedingungen herrschen, die zu gleichen Bedingungen führen.
 



Nun, Okotombrok,

so richtig verstanden hast Du die SRT wohl nicht, denn auch Physiker betonen, dass die SRT nur von beobachterspezifischen  S i c h t e n  spricht, aber keineswegs von Raumstruktur:
 

Zitat von Helmut Satz (2013):
 
Wenn in einem Raumschiff, das sich mit einer hohen konstanten Geschwindigkeit v relativ zur Erde bewegt, die Lichtgeschwindigkeit c die gleiche ist, wie in einem irdischen Labor, dann muss aus unserer Sicht das Längenmaß des Raumschiffes kürzer sein als unseres oder deren Uhr muss langsamer sein als unsere oder beides.

In der Tat tritt beides auf. Ein festes Maß d0. ein Standardmeter, hat den gleichen Wert für uns hier wie für die Passagiere des Raumschiffs.

Aber von uns aus gemessen erscheint deren Standardmeter d0 auf eine Länge d geschrumpft

d  =  d0 • ( 1 – (v/c)2 )1/2


Und ein festes Zeitintervall t0 erscheint, von der Erde ais gesehen, länger geworden zu sein, den Wert

t  =  t0 • ( 1 – (v/c)2 )–1/2

zu haben.
 


Quelle: Seite 212 des Buches Gottes unsichtbare Würfel von Helmut Satz (Verlag C.H. Beck 2013)

Der Autor — Helmut Satz — war von 1971 bis 2001 Professor für Theoretische Physik an der Universität Bielefeld.


 
Fast noch deutlicher wird Grtgrt bestätigt durch Bojowald:

Zitat von Martin Bojowald (2008):
 
Wenn wir uns beim Betrachten einer Situation schneller bewegen als ein zweiter Beobachter, so erscheinen uns räumliche und zeitliche Abstände in den beobachteten Ereignissen anders als diesem.

Wie ein Wechsel des Sichtwinkels die räumlichen Ausdehnungen ineinander überführt, so wandelt ein Ändern der Geschwindigkeit beim Beobachten räumliche in zeitliche Abstände um und umgekehrt.

Aus diesem Grunde ist die Unterscheidung zwischen räumlicher und zeitlicher Ausdehnung vom Standpunkt (oder genauer von der "Standbahn", wenn wir uns wirklich bewegen) abhängig und hat keine physikalische Basis unabhängig von Beobachtern. Anstatt Raum und Zeit zu trennen, gibt es nur ein einziges gemeinsames Objekt: die Raumzeit.
 



Quelle: Seite 24 des Buches Zurück vor den Urknall von Martin Bojowald (Fischer Taschenbuchverlag, 3. Auflage 2012)

Martin Bojowald lehrt Theoretische Physik an der Penn State University, USA.


 
Völlig richtig wird der wahre Sachverhalt auch beschrieben durch Carrier. Seine Formulierung enthält auch eine Begründung:

Zitat von Martin Carrier (2009):
 
Kennzeichnend für die SRT ist der Vorrang raumzeitlicher Größen vor ihren räumlichen und zeitlichen Bestandteilen. Dieser Primat der 4-dimensionalen Größen wurde zuerst 1908 von Minkowski hervorgehoben: Von Stund an sollen Raum für sich und Zeit für sich völlig zu Schatten herabsinken und nur noch eine Art Union der beiden soll Selbständigkeit bewahren.

Minkowski erkannte, dass sich die SRT als eine spezifische, neuartige Geometrie darstellen lässt, in der die raumzeitlichen Abstände eine zentrale Stellung insofern einnehmen, als sie die  o b j e k t i v e n  Beziehungen zwischen Ereignissen wiedergeben, während deren räumliche und zeitliche Bestimmungsstücke vom Bewegungszustand des Beobachters abhängen und in diesem Sinne  s u b j e k t i v  sind.

Genauer: Der [mit Hilfe der Minkowski-Metrik errechnete] Viererabstand ist die zentrale Größe der Raumzeit der SRT. Im Unterschied zur Raum-Zeit der klassischen Physik bleibt allein diese Größe bei einem Wechsel des Inertialsystems erhalten — nicht aber der 3-dimensionale räumliche Abstand oder der 1-dimensionale zeitliche.

Wegen dieser Invarianz ist der Viererabstand fundamentaler [ der Wirklichkeit näher ] als die vom Bezugssystem abhängigen räumlichen und zeitlichen Größen.

Dennoch ist es nicht die 4-Dimensionalität als solche, die die Relativitätstheorie auszeichnet: Auch Ereignisse in der Newtonschen Raum-Zeit werden ja erst durch 3 Ortskoordinaten und eine Zeitkoordinate vollständig lokalisiert. Kennzeichnend für die SRT ist vielmehr der Vorrang raumzeitlicher Größen vor ihren räumlichen und zeitlichen Bestandteilen. ...

Insofern beinhaltet der Übergang von der Newtonschen zur Einsteinschen Raumzeit die Ersetzung 3-dimensionaler bzw. 1-dimensionaler absoluter Größen durch jeweils nur  e i n e  4-dimensionale absolute Größe.
 

Insbesondere sagt Carrier (nach Erklärung eines scheinbaren Paradoxons):

Zitat von Martin Carrier (2009):
 
Deutlich wird, dass die relativistische Längenkontraktion eine Folge des Verfahrens der Längenmessung ist.
 



Quelle: Seite 33-39 des Buches Raum-Zeit von Martin Carrier (de Gruyter 2009)

Carrier ist Professor für Philosophie an der Universität Bielefeld mit Schwerpunkt Wissenschaftsphilosophie
Er begann seine Ausbildung mit einem Studium der Physik.


 

  Beitrag 1997-134
Nicht alle Physik-Professoren scheinen die SRT so ganz genau zu verstehen (ein Beispiel)

 
 
Bauhof in 1997-122:
 
Grtgrt in 1997-121:
Hi Eugen,

wenn du mir Links auf jene Stellen geben kannst — oder sie in Büchern zu finden sind, auf die ich Zugriff habe — werde ich sie mir ganz bestimmt ansehen.

Hallo Grtgrt,

gut, ich mache mir mal die Mühe und gebe dir die entsprechenden Hinweise als Zitate aus meinen Büchern. Keiner der aufgeführten Autoren gibt einen Hinweis darauf, dass das Zwillingsparadoxon nur mit Hilfe der ART gelöst werden könnte. Sie argumentieren alle mit Hilfe der SRT.


Hallo Eugen,

erst mal vielen Dank für Deine Mühe. Ich weiß sie sehr zu schätzen!

Nun aber lass mich dazu Stellung beziehen (Ausgangspunkt können heute nur die Zitate selbst sein, denn keines jener Bücher habe ich zu Hause):

Zunächst mal ist festzustellen, dass wir beide hier etwas sehr Interessantes entdeckt haben:


Die unterschiedliche Überzeugung, die hier im Forum die beiden Gruppen an Physik interessierter Laien


{  Bauhof, Stueps, Henry, Okotombrok  } vs {  Grtgrt, Harti  }


auseinander dividiert, besteht offenbar auch zwischen den beiden folgenden Gruppen von Physik-Professoren:


D.Giulini & T.Filk  +  C.Kiefer  +  E.Rebhan  } vs {  W.Greiner & J.Rafelski  }.



Um zu sehen, wer recht hat, müssen wir jetzt also tatsächlich die Argumentation aller viel genauer als bisher betrachten, um zu sehen, wo die eine oder andere lückenhaft oder nicht nachvollziehbar ist. Tun wir das:

Allen — den Professoren ebenso wie uns hier im Forum — ist gemeinsam, dass wir wissen: Wo die Situation, die zum sog. Zwillingsparadoxon führt (kurz: SZw), in der Wirklichkeit nachgestellt wird, werden die beiden Zwillinge mindestens zeitweise unterschiedlichen Beschleunigungskräften ausgesetzt sein. Schon allein deswegen wird jeder Logiker uns sagen: Da die SRT Situationen, in denen es zu beschleunigter Bewegung kommt, gar nicht vorgibt, noch behandeln zu können, kann sie auf Situation SZw auch gar nicht anwendbar sein.

Nun könnte man aber argumentieren, dass die SRT, wenn man genauer hinsieht, vielleicht auch beschleunigte Situationen noch behandeln könnte (dass also Einstein und Minkowski, die Einschränkung, nur gleichförmige Bewegung zuzulassen, vielleicht gar nicht hätten machen müssen).

Jeder, der behauptet, auch die SRT würde beweisen, dass die Zwillinge, wenn sie sich wieder treffen, unterschiedlich alt sind, geht — implizit oder explizit — von dieser Annahme aus — hat dann aber auch die Pflicht, sie zu beweisen.

Die Zitate [1] und [2] skizzieren den Ansatz solcher Beweisversuche, sind aber nicht detailliert genug, mir zu zeigen, ob jene "Beweise" auch wirklich schlüssig sind.

Im Zitat [3] wird durch Rebhan explizit versucht, die SRT so zu erweitern, dass sie auch noch auf beschleunigte Bewegung anwendbar ist. Dies, so wird behauptet, gelänge über Anwendung eines mathematischen Grenzprozesses. Zwei Aussagen aus diesem Beweisversuch aber finde ich nicht wirklich nachvollziebar. Es sind die jetzt im Zitat farblich hervorgehobenen Teile:

Zitat:
 
Wir betrachten noch die kurzen Beschleunigungsphasen der Rakete im Inertialsystem der Erde. Diese können wir stückweise aus Teilen zusammensetzen, während deren die Geschwindigkeit annähernd konstant ist. Da diese jeweils kleiner als die Fluggeschwindigkeit v ist, ergibt sich für die Dauer einer ganzen Beschleunigungs­phase im Mittel eine kleinere Zeitdilatation als für eine gleich lange Flugphase mit der konstanten Reisegeschwindigkeit. Lassen wir jetzt die Beschleunigung gegen unendlich und die Beschleunigungsdauer gegen null gehen, so geht auch die diktierte Beschleunigungsdauer gegen null.

Man könnte vermuten, dass dem Effekt der SRT auch noch Effekte der ART überlagert sind. Wir werden später allerdings sehen, dass das nur der Fall ist, wenn Schwerefelder involviert sind, ansonsten bleibt die oben angestellte Überlegung richtig. Man kann sich aber auch schon, ohne Genaueres über ART-Effekt zu wissen, darüber klar werden, dass diese bei einer langen Raumfahrt keine Rolle spielen. Um das einzusehen, nehmen wir an, für den Zwilling auf der Erde sei die Dauer einer Beschleunigungsphase dt, für den im Raumschiff unter Einbezug von ART-Effekten dt'. Aus der Homogenität der Zeit folgt, dass der Quotient dt'/dt nur von der Art des Beschleunigungsprozesses abhängt, nicht aber von dem Zeitpunkt, zu dem er durchgeführt wird. Die Raumfahrt enthält vier gleichartige Beschleunigungsprozesse, die Geschwindigkeit des Raumschiffes geht von

0 → v → 0 → v → 0

Damit ergibt sich als Altersunterschied der Zwillinge

D = (T – T’) + 4(dt ─ dt')

Der Anteil (T ─ T') wächst mit der Dauer der Raumfahrt, während der Anteil 4(dt ─ dt') konstant ist. Er kann durch ein Differenzexperiment zum Verschwinden gebracht werden; in einem Einzelexperiment wird er vernachlässigbar, wenn die Raumfahrt hinreichend lange dauert. Für unsere weiteren Überlegungen machen wir die letzte Annahme.


Zitat [4] schließlich begündet die Meinung der Autoren nur in Form einer (als offensichtlich waht hingestellten)  V e r m u t u n g  (und ist deswegen nicht ernst zu nehmen. Die Autoren scheinen Gymnasiallehrer zu sein, Personen also, die wohl auch nicht kompetenter sind als an Relativitätstheorie ernsthaft interessierte Laien.

Dem Zitat aus [5] schließlich kann ich gar nicht entnehmen, dass der Autor — Ulrich Schröder — es für zweifelsfrei erwiesen hält, dass die SRT auf die Situation beschleunigter Bewegung in irgendeiner sinnvollen Verallgemeinerung ihrer selbst (der SRT) anwendbar wird. Er weist lediglich mit Bestimmheit darauf hin, dass in der realen Wirklichkeit unser Welt (wie Hafele & Keating zeigen konnten) es tatsächlich zu unterschiedlich schneller Alterung zweier Objekte kommen kann.


[1] Giulini, Domenico und Filk, Thomas: Am Anfang war die Ewigkeit. Auf der Suche nach dem Ursprung der Zeit.
München 2004
ISBN=3-406-52187-8

[2] Kiefer, C...: Der Quantenkosmos.
Frankfurt am Main 2008
ISBN=978-3-10-039506-1

[3] Rebhan, Eckhard: Theoretische Physik. Band 1: Mechanik, Elektrodynamik, Spezielle und Allgemeine Relativitätstheorie, Kosmologie
Heidelberg 1999
ISBN=3-8274-0246-8

[4] Beyvers, Gottfried und Kusch, Elvira: Kleines 1 x 1 der Relativitätstheorie. Einsteins Physik mit Mathematik der Mittelstufe.
Berlin 2009
ISBN=978-3-540-85202-5

[5] Schröder, Ulrich E.: Spezielle Relativitätstheorie (Vierte Auflage)
Frankfurt am Main 2005
ISBN=3-8171-1724-8


Wenn wir uns jetzt im Gegenzug auch mein Argument aus Beitrag 1997-114 nochmals vornehmen, so wird klar:

Meine Argumentation benötigt, um gültig zu sein, nur eine einzige Voraussetzung:
Die Konstanz und Endlichkeit der Lichtgeschwindigkeit.


Sie ist deswegen sogar noch auf beschleunigte Bewegungen anwendbar und zwar ganz unabhängig davon, ob beide Zwillinge oder nur einer beschleunigt wird.

So lange mir also in eben dieser Argumentation niemand einen Fehler aufzeigen kann, sehe ich sie als wunderbar einfache Bestätigung der Meinung von W.Greiner und J.Rafelski.

Auch wenn man nachsieht, wie renommiert die einzelnen Professoren sind, stehen da W.Greiner & J.Rafelski mit Sicherheit an der Spitze.

Damit, Eugen, bleibt mir vernünftiger Weise gar nichts anderes übrig, als zunächst mal zu glauben, dass diese beiden — und damit auch ich — recht haben.


Mit besten Grüßen,
Gebhard (grtgrt)

 


Hallo Grtgrt,

lass Dich durch das Etikett "Einstein-Widerleger" nicht ins Boxhorn jagen. Selbstverständlich kann man das Zwillingsparadoxon nur mit Hilfe der ART lösen.


Hallo Harti,

auch nachdem Okotombrok das Thema 1997 für jede weitere Äußerung gesperrt hat, bin ich der Frage, ob das Zwillingsparadoxon per SRT lösbar ist, weiter nachgegangen und weiß nun, dass Du und ich — aber dennoch auch die anderen — recht hatten.

Es gilt nämlich:

Obgleich Einstein selbst im Rahmen der SRT niemals auch beschleunigte Bewegung diskutiert hat, hat man das — so etwa um das Jahr 2000 herum — dennoch versucht und hierbei schnell festgestellt, dass die Lorentztransformation der SRT auch zutreffende Aussagen darüber machen kann, wie Beschleunigung sich auf das beschleunigte System auswirkt (siehe etwa ein durch Joachim Schulz beschrie­benes Gedankenexperiment).

Dass solche auf dem Hintergrund der Raumzeit der SRT errechneten Ergebnisse tatsächlich (grob wenigstens) mit denen der ART übereinstimmen, wird — wenigstens für die dem Zwillingsparadoxon zugrunde liegende Situation — explizit nachgerechnet von Bernd Sonne und Reinhard Weiß in ihrem Buch Einsteins Theorien: Spezielle und Allgemeine Relativitätstheorie für interessierte Einsteiger und zur Wiederholung (Springer, 2013). Ihre Rechnung auf Seite 111 bis 129 des Buches zeigt zudem sehr klar, dass auch die SRT den für die Zwillinge entstandenen Altersunterschied

ausschließlich auf jene Phasen der Reise zurückführt, in denen die beiden Zwillinge unterschiedlich beschleunigt waren.


Damit steht fest:
  • Wer von der SRT (in Einsteins Fassung) ausgeht, geht von einer Theorie aus, die zu beschleunigten Bewegungen nichts aussagen will und demnach auf die Situation des Zwillingsparadoxon gar nicht anwendbar ist.
  • Seit etwa 2000 aber geht man nicht mehr davon aus, dass die SRT — wenn man versucht, sie auch auf beschleunigte Bewegung anzuwenden — falsche Aussagen macht. Soweit man nämlich Beispiele in SRT  u n d  ART durchgerechnet hat, kam man zum gleichen Ergebnis (was aber nicht heißt, dass wirklich alles, was die ART sagt, auch mit Mitteln der SRT nachrechenbar wäre).
    Es kommt hier wohl die Tatsache zum Tragen, dass in jeder hinreichend kleinen Umgebung eines nicht singulären Punktes P der Raumzeit der ART die SRT sehr gute Approximation der ART ist.

Hierbei allerdings muss berücksichtigt werden:
    Wer im Rahmen der SRT auch beschleunigte Bewegungen betrachtet, sieht die Beschleunigung einfach nur als erste Ableitung der Geschwindigkeit nach der Zeit — er sieht sie dann also noch nicht — wie die ART es tut — auch als physikalisches Phänomen äquivalent zu einer Krümmung der Raumzeit.

Diesen wesentlichen Unterschied nicht zu übersehen, macht es schon Sinn, über beschleunigte Bewegungen tatsächlich nur mit Hilfe der ART nachzudenken. Siehe dazu auch Bemerkungen auf gutefrage.net.

Man sieht hier sehr schön, dass unterschiedlich genaue physikalische Modelle — SRT und ART — eben auch unterschiedlich genaue Aussagen machen.


Beste Grüße,
grtgrt
 

 Beitrag 0-224
Unterschiede zwischen Quantenphysik und klassischer Physik

 
 

 
Unterschiede zwischen

Quantenphysik und klassischer Physik

 
 
Basis der klassischen Physik ist die Annahme, dass jedes System durch seine Einzelbestandteile vollständig bestimmt sei. Erst Quantenphysik hat uns gelehrt, dass das nicht so sein muss:
 
Wenn etwa ein Elektron auf ein Positron trifft, so kann aus diesem System ein Paar von Lichtquanten werden. Mit anderen Worten: Ein System von zwei Fermionen, die beide Ruhemasse haben und sich nicht mit Lichtgeschwindigkeit bewegen können geht über in ein System von zwei Bosonen, die sich nur mit Lichtgeschwindigkeit bewegen.
 
Dieses Beispiel zeigt, dass die Teile, in die ein Quantensystem zerfallen kann, derart unterschiedlicher Art sein können, dass die naive Vorstellung, das Quantensystem  b e s t e h e  aus, sich von selbst verbietet.
 
In diesem Sinne besteht auch ein Tisch nicht aus Atomen oder Elementarteilchen, sondern kann lediglich in sie zerlegt werden. Er ist ein Ganzes, welches Eigenschaften hat, die auf Basis der kleinsten Teilchen, aus denen er aufgebaut scheint, noch nicht einmal formulierbar sind.
     
  • Der große Unterschied der Quantenphysik gegenüber der klassischen Physik besteht also darin, dass quantenphysikalische Objekte nur selten so verstanden werden können, dass sie aus den Teilchen bestehen, durch deren Verschmelzung sie entstanden oder in die es möglich ist, sie zu zerlegen.

 
Trotzdem also die Quantenphysik uns zeigt, dass naiver Reduktionismus Grenzen hat, gilt dennoch:
     
  • Die Quantentheorie ist die bisher genaueste Theorie, welche der Physik zur Verfügung steht.
     
  • und zudem noch die einzige, deren Vorhersagekraft bisher noch an keinerlei Grenzen gestoßen ist.

Die Quantentheorie beinhaltet einen ausgereiften mathematischen Formalismus, mit dem sich sehr gut arbeiten lässt (und das ohne Rücksicht darauf, ein wie tiefes oder auch nur einheitliches philosophisches Verständnis die zusammen arbeitenden Physiker erlangt haben).
 
Thomas Görnitz schreibt, es zeige sich hier, dass etwas zu  b e h e r r s c h e n  und etwas wirklich zu  v e r s t e h e n , zwei unterschiedliche Dinge sind:
     
  • Wir beherrschen die Quantenphysik über ihren zuverlässigen mathematischen Formalismus, und das obgleich einige ihrer bedeutendsten Mitentwickler — ja sogar die, welche diesen Formalismus schufen — der Meinung waren, die Theorie sei "unverstehbar".

 
Note: Schon im Jahr 2000 ging man davon aus, dass etwa 1/4 des Bruttosozialproduktes hochentwickelter Industriestaaten auf Anwendungen der Quantenphysik beruhe: Die gesamte Festkörperphysik, die Halbleitertechnologie, Computer, Laser, Solarzellen, Kernkraftwerke, aber auch viele medizinische Untersuchungs- und Behandlungsmethoden und -werkzeuge (man denke z.B. an Kernspintographen oder die Positronen-Emissions-Spektrographie).
 
Supraleitung und Suprafluidität gelten als besonders spektakuläre Quantenzustände, da sie sogar  m a k r o s k o p i s c h e  Phänomene sind.
 
Man sollte also nicht glauben, die Quantentheorie sei nur auf den Bereich der Mikrophysik beschränkt.
 

 
 
Elementarteilchen sind emergente Phänomene

 
Die Tatsache, dass sich Quantensysteme der reduktionistischen Methode entziehen, scheint mir darin begründet zu sein, dass selbst Elementarteilchen nicht wirklich unzerlegbar sind, sondern — als Buckel von Wellenpaketen — ja nur  e m e r g e n t e  Phänomene darstellen:
 
 
Jedes Elementarteilchen ist Summe extrem vieler Wellen, deren Menge ständigem Wandel unterliegt.

 
Den Beweis hierfür liefert die Quantenfeldtheorie. Sie nämlich sieht jedes Elementarteilen als Summe von Feldanregungen, deren jede — einzeln für sich — Welle genau einer Frequenz ist. Die Zeitspanne, über die hinweg so eine Welle existiert, kann beliebig kurz sein, muss aber — nach Heisenbergs Ungleichung für die Unbestimmtheit von Lebensdauer und Energie — umso größer sein, je kleiner die Frequenz (und damit die Energie) der Welle ist.
 

 
 
Jede klassische Systembeschreibung ist unvollkommen, da ...

 
... sie das betrachtete System
     
  • ausschließlich als Summe seiner Teile beschreibt,
     
  • hierbei selbst festlegt, was genau sie als seine kleinsten, nicht weiter zerlegbaren Teile sehen möchte,
     
  • und zudem noch sämtliche Bezüge ignoriert, die das beschriebene System hin zu seiner Umwelt hat oder haben könnte.

 
Henadische Gesamtheiten — vor allem lebendige Systeme — sind auf diese Weise nur völlig unzureichend beschrieben.
 
Dies erkennt sofort, wer sich vor Augen führt, dass kein einziges Lebewesen – ähnlich wie ein Uhrwerk – erst in kleinste Teile zerlegt und dann verlustfrei daraus wieder zusammengesetzt werden kann.

 
 
System-Isolation

 
Aus Sicht klassischer Physik sind Systeme nur dann isoliert, wenn sie sich räumlich nicht durchdringen, noch besser: wenn sie rämlichen Abstand von einander haben.
 
Ganz anders in der Quantenphysik: Hier gelten zwei Systeme als isoliert voneinander, wenn ihnen Wechselwirkung unmöglich (bzw. weitgehenst unmöglich) gemacht wurde. Dies kann auch dann der Fall sein, wenn sie sich räumlich durchdringen. Bestes Beispiel hierfür ist durch eine Glasfaser gesandtes Licht.
 
Nur isolierte Quantensysteme werden sich nicht miteinander verschränken, denn: Jede Wechselwirkung erzeugt Verschränkung.

 

tags: SRT1gegreit Physik1gegreit ART1gegreit