
Sample Design

to explain the Specification Card Approach for

Conceptual Software Design:

WissDB

A system

to store & retrieve Knowledge Items

Part 3

The Data Layer (Business Object Storage)

URI = D_ (WissDB / Design / The Data Layer)

WissDB – The Data Layer
06.08.2016

page 1

WissDB – The Data Layer
06.08.2016

page 2

This page is empty

WissDB – The Data Layer
06.08.2016

page 3

Contents

Purpose of this Document... 6

Document Status.. 6

Management Summary.. 8

Notation and Terminology... 9

WissDB Business Object Services...10

R_ Unknown_Semantics...11

Data Views for C_WissDB_DL_API...12

B_ WissDB_Database.. 12
V_ Locators.. 13
R_ Allowed and Disallowed Nesting of Units..14
V_ Subsets of the B_WissDB_Database..14
B_ URL... 15
B_ Domain_Update_Format...15
B_ Process_Update.. 16
B_ Aspect_Update.. 16
B_ Association_Update..17

Services offered by C_WissDB_DL_API..18

R_ Requirements on DL_API API Implementation...18
R_ Project Locator Presentation...19
S_ Update_Process_Knowledge..20
S_ Update_Aspect_Knowledge..22
S_ Update_Result_Knowledge...24
S_ Ensure_Association..26
S_ Forget_Association... 27
S_ Reclassify_Item... 28
S_ Set_Content.. 30
S_ Get_Content.. 32
S_ Get_Skeleton.. 33
S_ Select_Results.. 35
S_ Select_Items... 37
S_ Select_Processes... 39
S_ Exclude_Aspects... 40
S_ Exclude_Processes... 41
S_ Exclude_Results... 42
S_ Describe_DB_DomainValues..43
S_ Replace_or_create_DB_DomainValues..44
S_ Set_Alias... 45
S_ Get_Alias... 46
S_ Testsupport_New_DB...47
S_ Testsupport_DL_API_Reaction_Scope...48

WissDB – The Data Layer
06.08.2016

page 4

This page is empty

WissDB – The Data Layer
06.08.2016

page 5

Purpose of this Document

This paper might be part of a series of papers which constitute the conceptual and logical design of
the WissDB Archive System which is

 to structure, store and index software engineering knowledge as well as results, such as best
practices, sample design or black boxes containing reusable code

 and support the user in finding and retrieving such knowledge in a sufficiently selective,
activity, role, or association related way.

Associations in this sense are binary associations of different, freely configurable semantics.

Basis of the Design are:

 D_(WissDB / Design / The Data Model)

 D_(WissDB / Design / The Application Service)

This Document’s URI is:

 D_(WissDB / Design / The Data Layer)

Document Status

Revision 0.1

Last Update 06/08/2016

Author Gebhard Greiter

Purpose This document is to serve as a not too simple example how to create software design in
form of Specification Cards, and how to present them in a Project Web (i.e. in HTML,
well indexed and heavily hyper-linked across arbitrarily many documents).

WissDB – The Data Layer
06.08.2016

page 6

This page is empty

WissDB – The Data Layer
06.08.2016

page 7

Management Summary

This document is to specify the

WissDB Data Layer API

but may – later on – also contain implementation documentation.

All parts of the Data Layer API that have a name starting with S_ are to be implemented as self-
contained methods that, if called, have to have atomic effect on the systems’s physical database.

The document contains essentially two parts:

 Section Data Views is a description of all necessary data views, especially of those that represent
business objects.

Each view is described and discussed only in as far as it is not already discussed in D_(WissDB /
Design / Data Model).

Objects to be stored are metadata, i.e. they are instances of one of these types:

 E_KnowledgeItem

 E_Process

 E_Role

 E_Aspect

Each of these metadata objects may, or may not, have associated to it a value of type FILE (the
so-called NodeValue). NodeValues are to be stored in the knowledge base itself.

 Section Services describes functionality available as a high level data storage interface on top of
which at least the services described in D_(WissDB / Design / The Business Layer) can easily be
implemented.

WissDB – The Data Layer
06.08.2016

page 8

Notation and Terminology

Each concept specified in this design paper has an identifier starting with a prefix telling you the type
of the concept. Prefix semantics are:

 C_… = A WissDB Component

 S_ = A service offered by a WissDB Component in form of at least an API

 m_… = Is so far a manual process only

 P_… = Business Process

 A_… = Actor (a user role or a system role)

 D_… = The logical name of a Document

 V_… = A logical data view on top of the physical data stored in the DL_API database. Such
a view must be definable via SQL (so that standard reporting tools can be applied).

 B_… = Business Object type (a B_x is a V_x such that all instances of type B_x are owned
by a unique WissDB Component. Ownership is the right to define this view.

WissDB – The Data Layer
06.08.2016

page 9

WissDB Data Layer Services

Component: C_WissDB_DL_API

part of C_WissDB

Abstract: This component is the abstract DBMS used e.g. by C_WissDB_API to implement a
B_Knowledge_Base.

Has to: Own and manage

 B_WissDB_Database.

Implement the following services:

 S_Update_Process_Knowledge

 S_Update_Aspect_Knowledge

 S_Update_Result_Knowledge

 S_Ensure_Association

 S_Forget_Association

 S_Set_Content

 S_Get_Content

 S_Get_Skeleton

 S_Select_Results

 S_Select_Items

 S_Select_Processes

 S_Exclude_Aspects

 S_Exclude_Processes

 S_Exclude_Results

 S_Describe_DB_DomainValues

 S_Replace_or_create_DB_DomainValues

 S_Set_Alias

 S_Get_Alias

 S_Testsupport_New_DB

 S_Testsupport_DL_API_Reaction_Scope

WissDB – The Data Layer
06.08.2016

page 10

Make all these functions available via a well documented API that could be
used by any kind of application.

Each of these functions must be protectable via C_Access_Control as a
separate resource (so that, depending on their role, users and applications might
be restricted to use only some of these functions).

User Roles to be supported by C_WissDB_DL_API are

 A_Application

 A_Tester

Because of: The Data Layer of WissDB should be reusable for applications similar but not
identical to the Business Layer of WissDB.

R_ Unknown_Semantics

The code implementing C_WissDB_DL_API must not depend on any concrete semantics of the values
that are, at any given time, valid values for

 D_ItemType

 D_PracticeType

 D_ViewType

 D_AbstractionType

 D_UsageType

 D_CorrelationType.

WissDB – The Data Layer
06.08.2016

page 11

Data Views for C_WissDB_DL_API

B_ WissDB_Database

Data view owner is C_WissDB_DL_API

Value Specification:

 For each WissDB installation there is one and only one such value.

 The data structures it is to support are discussed in D_(WissDB/ Result/ WissDB/ Design/ Data
Model).

 This value can be updated and read only via the services described in this document (so that
applications do not know whether this database is implemented via Enabler or a relational DBMS).
They need to be general enough to implement a B_Knowledge_Base.

 B_WissDB_Database takes the form of a tree-like structured unit containing subunits that are
instances of one of the following entity types (semantics unknown):

- E_Process

- E_Role

- E_Practice

- E_Result

- E_KnowledgeItem

- E_Aspect

- E_DomainValues

- E_Alias

 The treelike structure is a logical structure (not a physical one).

 In addition to the tree-like structure (given by attributes A_Loc) there is correlation structure
implemented in the form of binary relations

- R_Is_related_to

- R_Is_keyword_for

WissDB – The Data Layer
06.08.2016

page 12

V_ Locators

When reading the rest of this document, please keep in mind the following definitions:

A Locator is a value of type D_Locator (which is a sequence of D_Name values each followed by a
slash).

Reserved names are:

 Aspect

 Result

 Role

 Process

 Package

 Description

 Selector

 Structure

A locator X is called

 Project locator, if it does not contain a reserved name,

 Aspect locator, if the last reserved name in X is Aspect,

 Process locator, if the last reserved name in X is Process,

 Role locator, if the last reserved name in X is Role,

 Result Locator, if the last reserved name in X is Result,

 Description Locator, if the last reserved name in X is Description, Selector, or Structure.

 Package Locator, if matching the pattern Package/ D_Name.

X is said to by a preLocator of another locator Z if either X = Z or X is a prefix of Z.

A true preLocator of Z is a preLocator of Z that is shorter than Z.

A locator is said to be in use if and only if the B_WissDB_Database contains on object Y such that X
is preLocator of Y.a_Loc.

The implementation of C_WissDB_DL_API has to guarantee that each result locator in use has a
preLocator that is a project locator.

Each project locator has an Alias that is a positive integer. It is to be created automatically and is to be
seen as being a variable of type Project Locator. The value of this variable is case-sensitive and
may be changed using S_Set_Alias.

Locators L being prefixed by a project locator need to be stored in the form N/ X such that N is the
alias of a project locator and X is the unique rest of L always starting with prefix Aspect/, Process/,
Role/ or Result/. We then call N/ X the Standard Locator currently equivalent to locator L.

WissDB – The Data Layer
06.08.2016

page 13

R_ Allowed and Disallowed Nesting of Units

 Given any locator X/ Aspect, X/ Role, or X/ Result, the X may contain Result or Process (but not
Aspect or Role).

 Given any locator X/ Process, X may contain Result or Process (but not Aspect, Role, or
Process).

 The default project unit(1) has three direct subunits. Their locators are:

- 1/ Aspect
- 1/ Process
- 1/ Role
- 1/ Package

The code implementing the B_WissDB_Database is to guarantee that these locators are always in
use (so that the corresponding units exist even when they are empty).

The code will further have to guarantee that unit(1/ Package) is the only unit having the name
Package.

V_ Subsets of the B_WissDB_Database

When reading the rest of this document, please keep in mind the following definitions:

 B_ ALL_Knowledge is the set of all records X in the database that have an attribute a_Loc.

 B_ ALL_Aspects is the subset of records such that a_Loc is an Aspect Locator.

 B_ ALL_Processes is the subset of records such that a_Loc is a Process Locator.

 B_ ALL_Roles is the subset of records such that a_Loc is a Role Locator.

 B_ ALL_Results is the subset of records such that a_Loc is a Result Locator.

 B_ ALL_Packages is the subset of records such that a_Loc is a Package Locator.

The implementation of C_WissDB_DL_API is to guarantee that

 Each element of B_ALL_Aspects is a E_Aspect.

 Each element of B_ALL_Processes is a E_Process.

 Each element of B_ALL_Roles is a E_Role.

 Each element of B_ALL_Results is a E_Result.

 Each element of B_ALL_Packages is a E_KnowledgeItem.

WissDB – The Data Layer
06.08.2016

page 14

B_ URL

Data view owner is C_WissDB_DL_API

Value Specification:

Each B_URL is a string starting with one of the following prefixes:

 http://
 ftp://
 file://
 x-unc://

If starting with file:// it is to match the template file://host/path (i.e. it is not allowed to contain a drive
letter).

B_ Domain_Update_Format

Data view owner is C_WissDB_DL_API

Value Specification:

This is ASCII text that may contain lines of the form

- DomainName,ValueName
+ DomainName,ValueName,Semantics

with the plus or minus sign in column 1 and the DomainName starting in column 4.

As far as there are more lines in the text they are assumed to be comment.

WissDB – The Data Layer
06.08.2016

page 15

file://host/path

B_ Process_Update

Data view owner is C_WissDB_DL_API

Value Specification:

This is ASCII text that may (or may not) contain lines of the form

= Un=D_Locator
= Pm=D_Locator

- Role Locator
+ Role Locator

- Process Locator
+ Process Locator

Here Pn and Rm (always starting in column 4 of the text line) are abbreviation identifiers such that n
and m are unique positive integer.

Abbreviation identifiers can be used to replace frequently occurring preLocators.

B_ Aspect_Update

Data view owner is C_WissDB_DL_API

Value Specification:

This is ASCII text that may (or may not) contain lines of the form

= An=D_Locator

- Aspect Locator
+ Aspect Locator

Here An (always starting in column 4 of the text line) is an abbreviation identifier such that n is positive
integer.

Abbreviation identifiers can be used to replace frequently occurring preLocators.

WissDB – The Data Layer
06.08.2016

page 16

B_ Association_Update

Data view owner is C_WissDB_DL_API

Value Specification:

This is ASCII text that may (or may not) contain lines of the form

= An=D_Locator/Aspect
= Rm=D_Locator/Result

- Aspect Locator
 . Result Locator
 . Result Locator

+ Aspect Locator
 . Result Locator
 . Result Locator

- Item Locator
 . Relation: Item Locator

+ Item Locator
 . Relation: Item Locator

Here An and Rn (always starting in column 4 of the text line) are abbreviation identifiers such that n
and m are positive integers.

Abbreviation identifiers can be used to replace frequently occurring preLocators.

Each line with a plus or minus sign in column 1 has to be preceeded by an empty line and can be
followed by any number of lines starting with a dot in column 4 and two spaces between the dot and
the rest of the line.

Each Relation is to be a D_CorrelationType value which (in case of +) must be a currently valid value.

WissDB – The Data Layer
06.08.2016

page 17

Services offered by C_WissDB_DL_API

This section contains the logical design of the WissDB DL_API API. We start by describing important
requirements on the form this API has to take:

R_ Requirements on DL_API API Implementation

Each call of one of the services (= functions) specified in the following is to guarantee that the value of
the B_WissDB_Database remains unchanged if the ReturnCode value is neither RC_ok nor
RC_seeWarnings.

Another important requirement on these services is that they must be powerful enough to implement
C_WissDB_API in a painless way.

Each service is specified with two specific output parameters called AppErrors and ReturnCode:

 Out: AppErrors

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors

Depending on the programming langue used, these two parameters may be implemented quite
differently. In Java, e.g. at least RC_syserror would best be implemented in form of a runtime
exception, whereas RC_seeAppErrors might be implemented differently from case to case:

 If an exception such as ObjectNotFound is enough error description, to throw an exception
implementing both the returncode RC_seeAppErrors and also the AppErrors would be fine (and
should be preferred).

 If however syntax errors (or logical errors hard to explain) are detected somewhere, the AppErrors
need to be a dynamically generated text the application could then write to either a file or the
console.

A value of type AppErrors is a string containing one or more text sections of the form

AppError in S_x: ErrorType: Diagnostic data
or

Warning out of S_x: any text

such that S_x is the service activated by an application of the DL_API API (it must not be the name of
an auxiliary method that is part of the hidden implementation of this service: applications are to see the
system they use as a black box).

The service is to return RC_seeAppErrors if and only if parameter AppErrors is describing at least one
AppError.

The service should describe as many AppErrors as possible before returning.

WissDB – The Data Layer
06.08.2016

page 18

R_ Project Locator Presentation

With the exception of the two services

 S_Set_Alias

 S_Get_Alias

the API of C_WissDB_DL_API is not allowed to either accept or show project locators in any other
form than in the form of a number.

WissDB – The Data Layer
06.08.2016

page 19

S_ Update_Process_Knowledge

Component: S_Update_Process_Knowledge

part of C_WissDB_DL_API

Abstract: This is the function to update the B_WissDB_Database with respect to process
knowledge.

Parameters:

 In: Process

Is ASCII text of type B_Process_Update.

 In: Request

Must be CREATE, or REPLACE, or FORGET.

Value CREATE means: Return with RC_seeAppErrors if at least one of the
locators in Process is in use already.

 Out: AppErrors

If the value of B_WissDB_Database did not change, users should find a
description here telling them why.

Describe an AppError here if Request = CREATE though Process is containing
lines with a minus sign in column 1.

Describe an AppError here if Request = FORGET though Process is containing
lines with a plus sign in column 1.

Create a warning whenever an object to be deleted does not exist.

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors
 RC_seeWarnings

Has to: Implement the required update of the B_WissDB_Database, i.e.

 Delete in B_WissDB_Database all objects X of type E_Process such that some
preLocator of X is listed in Process with a minus sign.

 For each object Z in B_WissDB_Database.E_Result reduce Z.a_of to the effect
that the new value of Z.a_of is the longest preLocator of the old Z.a_of value
that is still in use. Set Z.a_of to NULL if this preLocator is not a role locator.

WissDB – The Data Layer
06.08.2016

page 20

 Then, for each line listed in Process with a plus sign, create the corresponding
E_Process object. Return with an AppError is the given Role Locator is currently
not in use.

RC_ok is allowed only if the Update requested could be implemented fully. If the
ReturnCode is different from RC_ok, the value of the knowledge base did not
change.

Because of: Applications of C_WissDB_DL_API need a way to update the B_WissDB_Database
with respect to process knowlege described therein.

WissDB – The Data Layer
06.08.2016

page 21

S_ Update_Aspect_Knowledge

Component: S_Update_Aspect_Knowledge

part of C_WissDB_DL_API

Abstract: This is the function to update the B_WissDB_Database with respect to the
knowledge classification schema (which is based on so-called Aspects: read
section 2.2 in D_ (WissDB/ Result/ WissDB/ Design/ Data Model).

Parameters:

 In: Update

Is ASCII text of type B_Aspect_Update.

 In: Request

Must be CREATE, or REPLACE, or FORGET.

Value CREATE means: Return with RC_seeAppErrors if at least one of the
locators in Aspect is in use already.

 Out: AppErrors

If the value of B_WissDB_Database did not change, users should find a
description here telling them why.

Describe an AppError here if Request = CREATE though Update is containing
lines with a minus sign in column 1.

Describe an AppError here if Request = FORGET though Update is containing
lines with a plus sign in column 1.

Create a warning whenever an object to be deleted does not exist.

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors
 RC_seeWarnings

Has to: Implement the required update of the B_WissDB_Database.

RC_ok is allowed only if the Update requested could be implemented fully. If the
ReturnCode is different from RC_ok, the value of the knowledge base did not
change.

Because of: Applications of C_WissDB_DL_API need a way to update the B_WissDB_Database

WissDB – The Data Layer
06.08.2016

page 22

with respect to aspects to be supported.

WissDB – The Data Layer
06.08.2016

page 23

S_ Update_Result_Knowledge

Component: S_Update_Result_Knowledge

part of C_WissDB_DL_API

Abstract: This is the function to update the B_WissDB_Database with respect to relationships
of type R_Is_related_to or R_Is_keyword_for.

Parameters:

 In: Update

Is ASCII text of type B_Association_Update.

 In: Request

Must be CREATE, or REPLACE, or FORGET.

 Out: AppErrors

If the value of B_WissDB_Database did not change, users should find an
explanation here.

Describe an AppError here if Request = CREATE though Update is containing
lines with a minus sign in column 1.

Describe an AppError here if Request = FORGET though Update is containing
lines with a plus sign in column 1.

Create a warning whenever a relationship to be deleted does not exist.

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors
 RC_seeWarning

Has to: Implement the required update of the B_WissDB_Database.

X.a_LastUpdate is now the current date for each E_Result X such that some part of
unit(X) was referred to in Update.

RC_ok is allowed only if the Update requested could be implemented fully. If the
ReturnCode is different from RC_ok, the value of the knowledge base did not
change.

Because of: Applications of C_WissDB_DL_API need a way to update the B_WissDB_Database

WissDB – The Data Layer
06.08.2016

page 24

with respect to Result data.

WissDB – The Data Layer
06.08.2016

page 25

S_ Ensure_Association

Component: S_Ensure_Association

part of C_WissDB_DL_API

Abstract: This is the functions to create a new instance of type R_Is_related_to.

Parameters:

 In: Locator_A

Is an instance of type E_KnowledgeItem.A_Loc.

 In: Locator_B

Is an instance of type E_KnowledgeItem.A_Loc.

 In: CorrelationType

Is an instance of type D_Correlation.

 Out: AppErrors

Must not be empty if the correlation could not be created (and did not yet exist).

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors

Has to: Ensure the existence of a relationship X satisfying

 X.a_A = Locator_A

 X.a_B = Locator_B

 X.a_Correlation = CorrelationType

Please note: If exactly this relationship already exists, the function is to return
RC_ok.

Because of: C_WissDB_API needs a way to create associations of type R_Is_related_to.

WissDB – The Data Layer
06.08.2016

page 26

S_ Forget_Association

Component: S_Forget_Association

part of C_WissDB_DL_API

Abstract: This is the functions to forget instance of type R_Is_related_to.

Parameters:

 In: Locator_A

Is an instance of type E_KnowledgeItem.A_Loc.

 In: Locator_B

Is an instance of type E_KnowledgeItem.A_Loc.

 In: CorrelationType

Is an instance of type D_Correlation.

 Out: AppErrors

Must not be empty if at least one of the two given locators is not an element of
E_KnowledgeItem.A_Loc.

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors

Has to: Ensure that, from now on, a relationship X satisfying

 X.a_A = Locator_A

 X.a_B = Locator_B

 X.a_Correlation = CorrelationType

will not exist.

Because of: C_WissDB_API needs a way to let B_WissDB_Database forget associations of type
R_Is_related_to.

WissDB – The Data Layer
06.08.2016

page 27

S_ Reclassify_Item

Component: S_Reclassify_Item

part of C_WissDB_DL_API

Abstract: This is the function to update the attributes of an existing E_KnowledgeItem and/or
to change the set of aspects associated to this item.

Parameters:

 In: Locator

Is an instance of type E_KnowledgeItem.A_Loc.

 In: Type

Is either NULL or an instance of type D_ItemType.

 In: View

Is either NULL or an instance of type D_ViewType.

 In: Abstraction

Is either NULL or an instance of type D_AbstrRequest.

 In: Usage

Is either NULL or an instance of type D_UsageType.

 In: Practice

Is either NULL or an instance of type D_PracticeType.

 In: Process

Is either NULL or a process locator (that must exist in B_WissDB_Database).

 In: Aspects

Is either NULL or a – possibly empty – set of aspect locators (all of them must
exist in the B_WissDB_Database)

 Out: AppErrors

Is to describe AppErrors if the given Locator is currently not in use, or if one of
the new attribute values is a value currently not allowed according to the data
found in the table B_WissDB_Database.E_DomainValues.

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors

WissDB – The Data Layer
06.08.2016

page 28

Has to: Update the B_WissDB_Database to the effect that the E_KnowledgeItem instance
identified by the given Locator will get new attribute values.

Attribute values with the restriction NOT NULL will be updated only in as far the new
value is not NULL. The same holds for attributes not existing on the item in question
because it is not a Result/ (or a practice instance).

If the item to be updated is of type E_Result or E_Practice, the function has to return
with RC_seeAppErrors if at least on of the locators in ofProcess or Aspects is not
an element of E_Process.A_Loc resp. E_Aspect.A_Loc.

Whether an item is a Result/ or not can be can be learned from the Locator.

Please note: Depending on the new value for A_PracticeType, the item updated
may be upgraded from E_Result to E_Practice, or may be downgraded from
E_Practice to E_Result.

Because of: C_WissDB_API needs a way to reclassify knowledge items.

To support upgrade resp. downgrade of E_Result resp. E_Practice instances is im-
portant because technology is changing fast, and so a Result that is today a Best
Practice may no longer deserve this quality one or two years later.

WissDB – The Data Layer
06.08.2016

page 29

S_ Set_Content

Component: S_Set_Content

part of C_WissDB_DL_API

Abstract: Each object X in the B_Knowledge_Base that has an attribute named a_Loc may
also have a presentation of type FILE or URL.

This value is referred to as the Content addressed by the locator X.a_Loc (or,
equivalently, as the value of unit(X)).

Parameters:

 In: Locator

Is to be a locator for data of type E_Aspect, E_Process, E_Role, or
E_KnowledgeItem.

 In: Content

Is either NULL or the B_URL to an existing file (of which to store a copy in form
of a NodeValue).

 In: Author

Is either NULL or a value of type D_EmailAddress.

 Out: AppErrors

Is to describe an AppError if the given Locator is currently not in use or if the file
identified by the B_URL could not be read.

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors

Has to: Ensure that, from now on,

 Content is the new content of the given Locator L, and

 NULL is the content of all locators of which L is a true preLocator.

 X.a_contact = Author and X.a_LastUpdate = today for each E_Result X such
that X.a_Loc is preLocator of L.

Reading content created this way is possible via S_Get_Content.

WissDB – The Data Layer
06.08.2016

page 30

Note: For each element X of B_WissDB_Database.E_Result the attribute X.a_since
is set only once – it is the day the record was created (so that we see how old a
result seen as a unit actually is).

Because of: C_WissDB_API needs a way to store content (or an URL seen to be a pointer to
content).

One reason for using an URL instead of a file may be that the content in question is
to be dynamic content created on request, or being stored, by some other system.

WissDB – The Data Layer
06.08.2016

page 31

S_ Get_Content

Component: S_Get_Content

Part of C_WissDB_DL_API

Abstract: Given a locator X in use, this is the function to ask the B_WissDB_Database for the
content that is referred to as the value of unit(X).

Parameters:

 In: Locator

Is to be a D_Locator currently in use.

 In: storeAt

Is to be the B_URL to the file that shall be created or re-created to represent a
copy of the content addresses by the Locator (in case of content value NULL
this file, if existing, is to be deleted).

- Out: Content

Is either NULL or a the B_URL to a file just created or re-created to represent
the content addressed by the given Locator.

 Out: AppErrors

Is to describe an AppError

- if the given Locator is not in use
- or if storeAt could not be created (if the Content is not NULL)
- or if storeAt could not be destroyed (if the Content is NULL).

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors

Has to: Retrieve the content addressed by the given Locator (or – if this content is NULL –
ensure that the file or folder storeAt does not exist any more).

Because of: C_WissDB_API needs a way to retrieve the value of unit(X), X a locator in use.

WissDB – The Data Layer
06.08.2016

page 32

S_ Get_Skeleton

Component: S_Get_Skeleton

part of C_WissDB_DL_API

Abstract: This is the service to be used for reading the unit-oriented structure of objects
existing in the B_WissDB_Database.

To explain this service we need some definitions:

 In the node-oriented view an object is a record of type E_Process, E_Role,
E_Aspect, or E_KnowledgeItem.

 Every such object X has a locator (which is the value found in X.a_Loc).

 In the unit-oriented view the object is the tree of all object that have a locator
identical to or prefixed by the locator of X.

 The unit-oriented structure of X (also called the skeleton of X) is defined to
be the set of all these locators presented in form of a lexicographically ordered
sequence of strings.

 A pseudo object is one of the following sets of objects in the sense above:

- B_ALL_Knowledge
- B_ALL_Processes
- B_ALL_Roles
- B_ALL_Aspects
- B_ALL_KnowledgeItems
- B_ALL_Results
- B_ALL_Practices

 The skeleton of a pseudo object is the union of the skeletons of all the objects
contained in the pseudo object.

Parameters:

 In: Locator

Is to be the locator for an object X that is either a pseudo object, or an object
that has in the B_WissDB_Database, an attribute X.a_Loc.

The locator for a pseudo object is /NameOfPseudoObject (e.g. /E_Roles).

 Out: Skeleton

Is either NULL or a sequence of N strings, N a positive number.

 Out: AppErrors

In case of Skeleton = NULL, the AppErrors must not be empty. The Skeleton
returned must be either complete or NULL.

 Out: ReturnCode is one of the following values:

 RC_ok

WissDB – The Data Layer
06.08.2016

page 33

 RC_syserror
 RC_seeAppErrors

Has to:
Retrieve the skeleton of the object or pseudo object identified by the given Locator
value.

Because of: C_WissDB_API needs a way to retrieve the unit-oriented structure of all the objects
stored in the B_WissDB_Database.

At least for generating test cases it will be helpful to have a service that is able to
show the complete skeleton of the knowledge base itself.

WissDB – The Data Layer
06.08.2016

page 34

S_ Select_Results

Component: S_Select_Results

part of C_WissDB_DL_API

Abstract: Using this functions you can search the B_WissDB_Database for Result objects
satisfying given search criteria.

Parameters:

 In: SeeType

Is to be a set of strings (as they are allowed to be checked in the Type section
of a B_Query_Specification).

 In: SeeScope

Is to be a set of strings (as they are allowed to be checked in the Scope section
of a B_Query_Specification).

 In: SeeView

Is to be a set of strings (as they are allowed to be checked in the View section
of a B_Query_Specification).

 In: SeeAbstraction

Is to be a set of strings (as they are allowed to be checked in the Abstraction
section of a B_Query_Specification).

 In: SeeUsage

Is to be a set of strings (as they are allowed to be checked in the Usage section
of a B_Query_Specification)

 In: SeeAspect

Is either NULL or a set of strings representing Aspect Locators (even the locator
Aspect/ itself is allowed).

Note: If one of these locators is a preLocator of another one, this other one is
redundant and will be ignored.

 In: SeeRole

Is either NULL or a not empty set of strings representing Role or Process
Locators.

Note: If one of these locators is a preLocator of another one, this other one is
redundant and will be ignored.

WissDB – The Data Layer
06.08.2016

page 35

 Out: Skeleton

Is either NULL or a not empty set of values of type D_Locator, in which case it is
to satisfy the following condition:

For each element X of B_WissDB_Database.E_Result, X.a_Loc is element of
the Skeleton if and only if

- X.a_Type is element of SeeType,

- X.a_ViewType is element of SeeView,

- X.a_AbstractionType is element of SeeAbstraction,

- X.a_UsageType is element of SeeUsage,

- X.a_PracticeType is element if SeePractice (if X is not a E_Practice, the
value if this attribute is assumed to be Result),

- R_Is_keyword_for says that X is associated with a keyword K such that at
least one element of SeeAspect is a prefix of K, and

- One of the process locators found in SeeRole is preLocator of X.a_of (so
that the X represents a result of this process), or X.a_of is the locator of a
E_Process P such that an element of SeeRole is preLocator of
P.a_RoleLoc.

 Out: AppErrors

If SeeRole is containing locators currently not in use, or not being a Role
Locator, an AppError is to explain this.

If at least one of the locators found in SeeAspect is not an Aspect Locator
currently in use, an AppError is to explain this.

AppErrors is to contain warnings if at least one string found in SeeType,
SeeScope, SeeView, SeeAbstraction, or SeeUsage is a value not allowed
therein and therefore ignored.

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors
 RC_seeWarnings

Has to: Create the Skeleton specified above as a subset of D_Locator. Then, if this set is
not empty, return RC_ok in ReturnCode and this set in Skeleton.

If the set is empty, return NULL in Skeleton and again RC_ok in ReturnCode.

Return NULL in Skeleton and RC_seeAppErrors AppErrors is explaining errors.

Because of: C_WissDB_API needs a way to implement S_Search_for_Knowledge.

WissDB – The Data Layer
06.08.2016

page 36

S_ Select_Items

Component: S_Select_Items

part of C_WissDB_DL_API

Abstract: This is the function to ask the B_WissDB_Database for items of a specific type.

Parameters:

 In: SeeType

Is to be a set of strings (as they are allowed to be checked in the Type section
of a B_Query_Specification).

 In: Locator

Is either NULL or a D_Locator containing Result/ as a substring.

 Out: Skeleton

Is either NULL or a not empty set of values of type D_Locator, in which case it is
to satisfy the following condition:

For each object X of type E_KnowledgeItem existing in B_WissDB_Database,
X.a_Loc is element of the Skeleton if and only if

- X.a_Type is element of SeeType, and

- The given Locator is NULL or is prefix of or identical to X.a_Loc.

 Out: AppErrors

Is to explain errors if the given Locator is neither NULL nor an element of the
set B_WissDB_Database.E_Result.A_Loc.

Is to contain warnings if at least one string found in SeeType is a value not
allowed therein.

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors
 RC_seeWarnings

Has to: Create the Skeleton specified above as a subset of D_Locator. Then, if this set is
not empty, return RC_ok in ReturnCode and this set in Skeleton.

If the set is empty, return NULL in Skeleton and again RC_ok in ReturnCode.

Return NULL in Skeleton and RC_seeAppErrors AppErrors is explaining errors.

WissDB – The Data Layer
06.08.2016

page 37

Because of: C_WissDB_API needs a way to implement S_Search_for_Knowledge.

WissDB – The Data Layer
06.08.2016

page 38

S_ Select_Processes

Component: S_Select_Processes

part of C_WissDB_DL_API

Abstract: This is the function to ask the B_WissDB_Database for process skeletons.

Parameters:

 In: Locator

Is to be either NULL or a string matching the pattern D_Locator/ Process/
Name.

 Out: Skeleton

Is either NULL or a not empty set of values of type D_Locator, in which case it is
to satisfy the following condition:

For each object X of type E_Process existing in B_WissDB_Database, X.a_Loc
is element of the Skeleton if and only if

- the given Locator is NULL or is prefix of or identical to X.a_Loc.

 Out: AppErrors

Is to explain errors if the given Locator is neither NULL nor an element of
B_WissDB_Database.E_Process.A_Loc.

Is to contain warnings if B_WissDB_Database.E_Process is empty.

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors
 RC_seeWarnings

Has to: Create the Skeleton specified above as a subset of D_Locator. Then, if this set is
not empty, return RC_ok in ReturnCode and this set in Skeleton.

If the set is empty, return NULL in Skeleton and again RC_ok in ReturnCode.

Return NULL in Skeleton and RC_seeAppErrors AppErrors is explaining errors.

Because of: C_WissDB_API needs a way to implement S_Search_for_Knowledge.

WissDB – The Data Layer
06.08.2016

page 39

S_ Exclude_Aspects

Component: S_Exclude_Aspects

part of C_WissDB_DL_API

Abstract: This is the function to ask the B_WissDB_Database for certain aspect and/or result
skeletons.

Parameters:

 In: Locators

Is a set of values of type D_Locator.

 In: Aspects

Is a set of Aspect Locators (which are D_Locators prefixed by Aspect/).

 Out: Skeleton

Is the largest subset of the given set of Locators such the for each element X in
Skeleton one of the following conditions holds:

 X is an aspect locator currently in use, and some element of Aspects is
preLocator of X.

 X is a result locator currently in use, and the relation

 Database.R_Is_keyword_for.(A_keywordLoc, A_forLoc)

contains a pair (A, K) such that K is a preLocator of X, and some element
of Aspects is preLocator of A.

 Out: AppErrors

Is to contain a warning for each element of Aspects that is either not an aspect
locator or a locator currently not in use.

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors
 RC_seeWarnings

Has to: Create the Skeleton as explained above.

Because of: C_WissDB_API needs a way to implement S_Search_for_Knowledge (and,
especially, the effect of the Exclude section in a B_Query_Specification).

WissDB – The Data Layer
06.08.2016

page 40

S_ Exclude_Processes

Component: S_Exclude_Processes

part of C_WissDB_DL_API

Abstract: This is the function to ask the B_WissDB_Database to select certain process and/or
result skeletons.

Parameters:

 In: Locators

Is a set of values of type D_Locator.

 In: Processes

Is to be either NULL or a set of process locators (which are D_Locators
containing Process/ as a substring).

 Out: Skeleton

Is the largest subset of the given set of Locators such the for each element X in
Skeleton one of the following conditions holds:

 X is a process locator currently in use, and some element of Processes is
preLocator of X.a_Loc.

 X is a result locator currently in use, and some element of Processes is
preLocator of X.a_ofAct.

 Out: AppErrors

Is to contain a warning for each element of Processes that is either not a
process locator or a locator currently not in use.

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors
 RC_seeWarnings

Has to: Create the Skeleton as specified above.

Because of: C_WissDB_API needs a way to implement in S_Search_for_Knowledge the effect
of the Exclude section in a B_Query_Specification.

WissDB – The Data Layer
06.08.2016

page 41

S_ Exclude_Results

Component: S_Exclude_Results

part of C_WissDB_DL_API

Abstract: This is the function to ask the B_WissDB_Database for process skeletons.

Parameters:

 In: Locators

Is a set of values of type D_Locator.

 In: Results

Is to be either NULL or a not empty set of result locators (which are D_Locators
containing Result/ as a substring).

 Out: Skeleton

Is the largest subset of the given set of Locators such the for each element X in
Skeleton there is an element R of Results such that P is preLocator of R.

 Out: AppErrors

Is to contain a warning for each element of Results that is either not a result
locator or a locator currently not in use.

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors
 RC_seeWarnings

Has to: Create the Skeleton as specified above.

Because of: C_WissDB_API needs a way to implement S_Search_for_Knowledge (and,
especially, the effect of the Exclude section in a B_Query_Specification).

WissDB – The Data Layer
06.08.2016

page 42

S_ Describe_DB_DomainValues

Component: S_Describe_DB_DomainValues

part of C_WissDB_DL_API

Abstract: This is the function to ask the B_WissDB_Database for a specification of the values
allowed for domains that are enumeration types.

Parameters:

 In: CSV_Dir

This is the B_URL to an existing folder in the file system.

 Out: CSV

This is the content of the file CSV_Dir/ DomainValues.csv describing in
B_Domain_Update_Format all valid values of type

 D_ItemType

 D_PracticeType

 D_ViewType

 D_AbstractionType

 D_UsageType

 D_CorrelationType.

 Out: AppErrors

Is to describe an AppError is the CSV_Dir could not be found or if the file
therein could not be written.

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors

Has to: Create or re-create the file CSV_Dir/ DomainValues.csv.

Because of: Applications of C_WissDB_DL_API need a way to ask which values are currently
allowed for enumeration domain types. Domain types must be allowed to be re-
configured.

WissDB – The Data Layer
06.08.2016

page 43

S_ Replace_or_create_DB_DomainValues

Component: S_Replace_or_create_DB_DomainValues

part of C_WissDB_DL_API

Abstract: This is the function to ask the B_WissDB_Database for a specification of the values
allowed for domains that are enumeration types.

Parameters:

 In: Update

This is the B_URL to an existing ASCII file in either

B_Domain_Update_Format

or B_XML_Domain_Update_Format.

 Out: AppErrors

Is to describe an AppError if the Update file could not be found, could not be
read, or did not contain values of type B_Domain_Update_Format or
B_XML_Domain_Update_Format.

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors

Has to: Update the set B_WissDB_Database.E_DomainValues as described in Update.

This is to be done as follows:

 Values described in the Update file in lines starting with a minus sign will be
marked as being obsolete.

 Values described in the Update file in lines starting with a plus sign will be
created using a number not in use so far (not even in use for obsolete values).

Because of: Applications of C_WissDB_DL_API need a way to re-configure domain types that
are enumerations.

WissDB – The Data Layer
06.08.2016

page 44

S_ Set_Alias

Component: S_Set_Alias

part of C_WissDB_DL_API

Abstract: This is the function by which you can define or change the value of an Alias N
representing a Project Locator that may or may not be currently in use.

Use S_Get_Alias in order to see the current value of N. Other services are to show
standard locators (because these are the values of A_Loc attributes).

Parameters:

 In: Alias

Is to be a positive integer.

 In: LocatorName

Is to be NULL or a D_Locator of type Project Locator that may or may not start
with the alias of another project locator.

 Out: AppErrors

Is to describe an AppError if the given LocatorName does not have the form of
a Project Locator, is starting with an alias that has value NULL, or is not NULL
though the Alias is currently not prefix of a locator in use.

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror
 RC_seeAppErrors

Has to: The B_WissDB_Database has assigned to each positive number either NULL or a
value of type D_Locator not starting with a number. From now on LocatorName is
to be this value.

Because of: Applications of C_WissDB_DL_API need a way to re-configure the value of a project
locator alias.

WissDB – The Data Layer
06.08.2016

page 45

S_ Get_Alias

Component: S_Get_Alias

part of C_WissDB_DL_API

Abstract:
This is the function allowing us to see the current value of a Project Locator Alias
(such an alias being any positive integer).

Parameters:

 In: Alias

Is a positive integer.

 Out: LocatorName

Is either NULL or a string of type D_Locator not starting with a number (in which
case this string is a locator currently in use).

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror

Has to: The B_WissDB_Database has assigned to each positive number either NULL or a
value of type D_Locator not starting with a number. LocatorName is to be a copy of
this value.

Use S_Set_Alias if you want to change the LocatorName S_Get_Alias is to return.

Because of: Applications of C_WissDB_DL_API need a way to see the current value of a project
locator alias.

WissDB – The Data Layer
06.08.2016

page 46

S_ Testsupport_New_DB

Component: S_Testsupport_New_DB

part of C_WissDB_DL_API

Abstract: This function is test support.

Parameters:

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror

Has to: Empty all tables

 E_DomainValues

 E_Process

 E_Role

 E_KnowledgeItem

 E_Aspect.

Because of: Test drivers need a way to give the B_WissDB_Database a well known initial value.

WissDB – The Data Layer
06.08.2016

page 47

S_ Testsupport_DL_API_Reaction_Scope

Component: S_Testsupport_DL_API_Reaction_Scope

part of C_WissDB_DL_API

Abstract: This function is test support.

Parameters:

 Out: Scope

This is the sequence of all strings that could occur as S_x.ReturnCode or – in
AppError descriptions – as S_x.ErrorType.

Here S_x is to cover all services that are part of the DL_API API (i.e. all
services described in this document).

 Out: ReturnCode is one of the following values:

 RC_ok
 RC_syserror

Has to: Produce and return the Scope value.

Because of: Test drivers need a way to quantify test coverage with respect to the so-called
System Reaction Metric: Given a test suite for C_WissDB_DL_API, test coverage is
said to be N% if and only if running the complete test reproduced N% of all values
found in Scope.

WissDB – The Data Layer
06.08.2016

page 48

	Sample Design
	to explain the Specification Card Approach for
	Conceptual Software Design:
	Part 3
	Purpose of this Document
	Document Status
	Management Summary
	Notation and Terminology
	WissDB Data Layer Services
	R_ Unknown_Semantics
	Data Views for C_WissDB_DL_API
	B_ WissDB_Database
	V_ Locators
	R_ Allowed and Disallowed Nesting of Units
	V_ Subsets of the B_WissDB_Database
	B_ URL
	B_ Domain_Update_Format
	B_ Process_Update
	B_ Aspect_Update
	B_ Association_Update

	Services offered by C_WissDB_DL_API
	R_ Requirements on DL_API API Implementation
	R_ Project Locator Presentation
	S_ Update_Process_Knowledge
	S_ Update_Aspect_Knowledge
	S_ Update_Result_Knowledge
	S_ Ensure_Association
	S_ Forget_Association
	S_ Reclassify_Item
	S_ Set_Content
	S_ Get_Content
	S_ Get_Skeleton
	S_ Select_Results
	S_ Select_Items
	S_ Select_Processes
	S_ Exclude_Aspects
	S_ Exclude_Processes
	S_ Exclude_Results
	S_ Describe_DB_DomainValues
	S_ Replace_or_create_DB_DomainValues
	S_ Set_Alias
	S_ Get_Alias
	S_ Testsupport_New_DB
	S_ Testsupport_DL_API_Reaction_Scope

